The following references have been collected with effort. We have tried to cite only relevant sources of information and not the results derived by a search engine. Obviously, it is intended only for “fair use”. This term implies that they will be used for academic research or educational purposes and not for commercial research or in order to make profit. To avoid an abuse we have limited the references so as to cover only the last 20 years.
If you have or want some of the papers listed below, do consider the ResearchGate group we have (more on the Download page on how to access it).
Disposal |
Ceramics |
Cement and Concrete |
Catalysis |
Metal recovery |
Other uses |
Radioactivity | Glass-ceramics | Concrete | Rare Earth Elements | ||
Neutrilisation | Non OPC binders |
Red Mud and Disposal
Paramguru, R.K., Rath, P.C., Misra, V.N. Trends in red mud utilization – A review, Miner. Process Extr. Metal. Rev. 26(1), (2005), 1-29
Agrawal, K.K. Sahu, B.D. Pandey, Solid waste management in non-ferrous industries in India, Resources, Conservation and Recycling 42 (2004), 99–120
Jongyeong Hyuna, Shigehisa Endoha, Kaoru Masudaa, Heeyoung Shinb, Hitoshi Ohyaa, Reduction of chlorine in bauxite residue by fine particle separation, Int. J. Miner. Process., 76, 1-2, (2005), 13-20
Claudia Brunori, Carlo Cremisini, Paolo Massanisso, Valentina Pinto, Leonardo Torricelli, Reuse of a treated red mud bauxite waste: studies on environmental compatibility, Journal of Hazardous Materials, 117(1), (2005), 55-63
H. Genc¸-Fuhrman, J.C. Tjell, D. McConchie, Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol™), J. Colloid Interface Sci. 271 (2004) 313–320
H. Genc¸-Fuhrman, J.C. Tjell, D. McConchie, Adsorption of arsenic from water using activated neutralized red mud, Environ. Sci. Technol. 38 (2004) 2428–2434
H. Genc¸-Fuhrman, J.C. Tjell, D. McConchie, O. Schuiling, Adsorption of arsenate from water using neutralized red mud, J. Colloid Interface Sci. 264 (2003) 327–334
Kadovic, Milena V., Klasnja, Mile T., Blagoievic, Nada Z., Vasiljevic, Rajko, Jacimovic, Zeljko K. Treatment of the liquid phase from the red mud disposal site of the aluminium plant in Podgorica. Hemijska Industrija (2004), 58(4), 186-190. (in Serbian)
Mistry, M., Roehrlich, M., Ruhrberg, M., Martens, P. N. A resource – oriented view on the disposal of waste generated during primary aluminum production. Schriften des Forschungszentrums Juelich, Reihe Materie und Material (2003), 17(Resource-Orientated Analysis of Metallic Raw Materials), 202-209.
Papatheodorou G., Stefatos A., Christodoulou D., Ferentinos G. “Small scale present day turbidity currents in a tectonically active submarine graben, the Gulf of Corinth (Greece): their significance in dispersing mine tailings and their relevance to basin filling”. In Submarine Mass Movements and their Consequences, (eds. J. Local & J. Mienert). Advances in Natural and Technological Hazards Research, (2003), vol. 19, pp. 459-469.
Luo, D. and Liu, J. “New process of utilizing red mud from aluminum treating plant to produce high quality direct-reduction iron”, China Mining 11 (2002), pp. 50–53 (in Chinese)
Adkins, S. J., Smith, D. T. Rheology aids for effective mud disposal. Light Metals (Warrendale, PA, United States) (2002), 115-120.
Technology Roadmap for Bauxite Residue Treatment and Utilization, The Aluminum Association, 2000.
Pilurzu, S., Cucca, L., Tore, G., Ullu, F., New research proposals for utilisation and disposal of bauxitic red mud from Bayer process. Eds. Gaballah, I., Hager, J., Solozabal, R. REWAS ’99–Global Symposium on Recycling, Waste Treatment and Clean Technology, Proceedings, San Sebastian, Spain, Sept. 5-9, 1999, 1471-480. Publisher: Minerals, Metals & Materials Society, Warrendale, Pa
Yang, S. W., Cao Y. H. and Li,Q., The status and development of comprehensive utilization of red mud in the aluminum industry, Conservation and Utilization of Mineral Resources 6 (1999), pp. 46–49 (in Chinese)
Hind, R., Bhargava, S. K., Grocott, S. C., The surface chemistry of Bayer process solids: a review, Colloids and Surfaces A: Physicochem. Eng. Aspects, 146 (1999) 359–374
Gerald W. M., Treatment and disposal of red mud generated in the Bayer Process, AU701874, (1999)
Papatheodorou G., Lyberis E. and Ferentinos G. “Use of Factor analysis to study the distribution of metalliferous bauxitic tailings in the seabed of the Gulf of Corinth, Greece”. Natural Resources Research, (1999), vol. 8, No 4, pp. 277-285.
Ronald F. N., Advances in red mud dewatering and disposal technologies. Light Metals (Warrendale, Pennsylvania) (1998), 107-113.
Prasad, P. M., Chandwani, H. K., Mahadevan, H. Disposal practices for bauxite tailings at the alumina refineries. Transactions of the Indian Institute of Metals (1996), 49(6), 817-839.
Xu, H.Z., Technological and economic feasibility study on producing building materials with red mud, Gold 17 (1996), pp. 17–21 (in Chinese)
Vidyasagar, P. Red mud separation in alumina industry for cleaner environment. Editor(s): Bhima Rao, R., Ansari, M. I., Solid Liquid Separation in Mineral and Metallurgical Industries, Selected Papers contributed for the National Seminar on Solid Liquid Separation in Mineral and Metallurgical Industries, Bhubaneswar, India, Nov. 27-28, 1996, 30-56. Publisher: Indian Institute of Mineral Engineers, Bhubaneswar Chapter, Bhubaneswar, India.
Poulos, S.E., Collins, M.B., Pattiaratchi, C., Cramp, A., Gull, W., Tsimplis, M., Papatheodorou, G., Oceanography and sedimentation in the semi-enclosed, deep-water Gulf of Corinth (Greece), Marine Geology, 134, (1996), 213-235
Varnavas, S. P., Achilleopoulos, P. P., Factors controlling the vertical and spatial transport of metal-rich particulate matter in seawater at the outfall of bauxitic red mud toxic waste, The Science of the Total Environment, 175, (1995), 199-205
Japan Patent No. Heisei 7-47301, 1995
Japan Patent No. Heisei 6-340934, 1994
Green, M. D., Guingand, N. J. de, Boger, D. V. Exploitation of shear and compression rheology in disposal of bauxite residue. Hydrometall. ’94, Pap. Int. Symp. (1994), 971-82. Publisher: Chapman & Hall, London, UK.
Salopek, B., Strazisar, J., The influence of red mud impoundments on the environment. Light Metals (Warrendale, PA, United States) (1993), 41-4.
Cooling, D.J. Glenister, D.J. Practical aspects of dry residue disposal Light Metals 1992, 25-31, Proceedings of the 121st TMS Annual Meeting, Mar 1-5 1992, San Diego, CA, USA, Published by Minerals, Metals & Materials Soc (TMS)
Asboth, J., Juhasz, I., Lesenyei, G.,. Disposal of harmful red mud deposits from production of aluminum oxide (1989), 7 pp. (in Chinese). CN 88-102710 19880511.
Patel, C. B., Jain, V. K., Pandey, G. S. Micro pollutants in red mud waste of aluminum plant. International Journal of Environmental Analytical Chemistry (1986), 25(4), 269-74.
Papatheodorou, G., Papaefthymiou, H., Maratou A., Ferentinos, G., Natural radionuclides in bauxitic tailings (red-mud) in the Gulf of Corinth, Greece, Radioprotection, Suppl. 1, vol. 40 (2005) S549-S555.
Cooper, M. B., Naturally Occurring Radioactive Materials (NORM) in Australian Industries – Review of Current Inventories and Future Generation, report prepared for the Radiation Health and Safety Advisory Council, 2005.
International Atomic Energy Agency. Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation, IAEA draft Technical Report, Vienna, November 2002.
Wang, K., Levels of radioactivity in the red mud and red mud cement and its dose rate for local residents. Huanjing Kexue, 1992, 13(5), 90-3, (in Chinese)
Pinnock W. R., Measurements of radioactivity in Jamaican building materials and gamma dose equivalents in a prototype red mud house. Health physics, 1991, 61(5), 647-51.
Beretka J., Matthew P. J., Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 1985, 48(1), 87-95.
Red Mud and Leaching
Brunori, C., Cremisini, C., Massanisso, P., Pinto, V., Torricelli, L., Reuse of a treated red mud bauxite waste: studies on environmental compatibility. Journal of Hazardous Materials (2005), 117(1), 55-63.
Duchesne, J., Doye, I. Use of alkaline industrial wastes and mine tailings to neutralise acid mine drainage. Publications of the Australasian Institute of Mining and Metallurgy (2003), 3/2003 (Sixth International Conference – Acid Rock Drainage, 2003), 1009-1012.
Kutle, A., Nad, K., Obhodas, J., Orescanin, V., Valkovic, V. Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia. X-Ray Spectrometry (2004), 33(1), 39-45.
Komnitsas, K., Bartzas, G., Paspaliaris, I. Efficiency of limestone and red mud barriers: laboratory column studies. Minerals Engineering (2004), 17(2), 183-194.
Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., Zucca, A. Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering (2003), 16(3), 187-192.
Singh I. B., Singh D. R. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement. Environmental technology (2002 Jan), 23(1), 85-95.
Blagojevic, N. Z., Zejnilovic, R. M., Krgovic, M. Examination of acid lye reaction of red mud from the alumina factory in Podgorica. Research Journal of Chemistry and Environment (2001), 5(4), 7-12.
McConchie, D., Clark, M., Hanahan, C., Fawkes, R. The use of seawater-neutralized bauxite refinery residues (red mud) in environmental remediation programs. Eds: Gaballah, I., Hager, J., Solozabal, R. REWAS ’99–Global Symposium on Recycling, Waste Treatment and Clean Technology, Proceedings, San Sebastian, Spain, Sept. 5-9, 1999, 1 391-400. Publisher: Minerals, Metals & Materials Society, Warrendale, Pa.
Polcaro, A., Palmas, S., Mascia, M., Renoldi, F., Co-disposal of industrial wastes to obtain an inert material for environmental reclamation. Annali di Chimica (Rome) (2000), 90(1-2), 103-111.
Banvolgyi, G., Siklosi, P., The improved low-temperature digestion (ILTD) process: an economic and environmentally sustainable way of processing gibbsitic bauxites. Light Metals (Warrendale, Pennsylvania) (1998), 45-53.
Kilinckale, F., Ayhan, S., Apak, R., Solidification/stabilization of heavy metal-loaded red muds and fly ashes. Journal of Chemical Technology & Biotechnology (1997), 69(2), 240-246.
Kirkpatrick, D.B. Red mud product development. Light Metals (Warrendale, Pennsylvania) (1996), 75-80.
Poellmann, H.. Immobilization of pollutants in waste disposals by forming mineral reservoirs. Editor(s): Petruk, William, Rule, Albert R. Process Mineral. XII (1994), 3-15. Publisher: Miner. Met. Mater. Soc., Warrendale, Pa.
Cakici, A. Ihsan; Yanik, Jale; Ucar, Suat; Karayildirim, Tamer; Anil, Huseyin. Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. Journal of Material Cycles and Waste Management (2004), 6(1), 20-26.
Paredes, J. R.; Ordonez, S.; Vega, A.; Diez, F. V. Catalytic combustion of methane over red mud-based catalysts. Applied Catalysis, B: Environmental (2004), 47(1), 37-45.
Metecan, I. H.; Karayildirim, T.; Yanik, J.; Saglam, M.; Yuksel, M. The effect of sulfur-promoted red mud catalysts on hydroliquefaction of oil shale. Oil Shale (2003), 20(1), 69-79.
Hoang, Manh; Opoku-Gyamfi, Kingsley. Catalytic systems and process for treatment of industrial process and waste streams. (2003), 18 pp. Pat. No. WO 2003028887
Pirkanniemi, Kari; Sillanpaa, Mika. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere (2002), 48(10), 1047-1060.
Escandon, Lara S., Ordonez, Salvador; Diez, Fernando V.; Sastre, Herminio. Ammonia oxidation over conventional combustion catalysts. Reaction Kinetics and Catalysis Letters (2002), 76(1), 61-68.
Ordonez, S.; Diez, F. V.; Sastre, H. Hydrodechlorination of tetrachloroethylene over sulfided catalysts: kinetic study. Catalysis Today (2002), 73(3-4), 325-331.
Halasz, J.; Mehn, D.; Gungl, A.; Kiricsi, I. Catalytic oxidation: destruction of halogenated organics over red mud originated catalysts. International Symposium & Exhibition on Environmental Contamination in Central & Eastern Europe, Proceedings, 5th, Prague, Czech Republic, Sept. 12-14, 2000 (2001), 1871-1877. Publisher: Institute for International Cooperative Environmental Research, Florida State University, Tallahassee, Fla.
Ordonez, S.; Sastre, H.; Diez, F. V. Hydrodechlorination of tetrachloroethylene over modified red mud: deactivation studies and kinetics. Applied Catalysis, B: Environmental (2001), 34(3), 213-226.
Ordonez, S.; Sastre, H.; Diez, F. V. Abatement of chlorinated pollutants in organic wastes using catalytic hydrodechlorination. Recent Research Developments in Chemical Engineering (2000), 4(Pt. 1), 327-339.
Yanik, J.; Uddin, M. A.; Ikeuchi, K.; Sakata, Y. The catalytic effect of Red Mud on the degradation of poly (vinyl chloride) containing polymer mixture into fuel oil. Polymer Degradation and Stability (2001), 73(2), 335-346.
Ordonez, S.; Sastre, H.; Diez, F. V. Characterization and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene. Applied Catalysis, B: Environmental (2001), 29(4), 263-273.
Yanik, Jale; Uddin, Md. Azhar; Sakata, Yusaku. The effect of red mud on the liquefaction of waste plastics in heavy vacuum gas oil. Energy & Fuels (2001), 15(1), 163-169.
Ordonez, S.; Sastre, H.; Diez, F. V. Catalytic hydrodechlorination of tetrachloroethylene over red mud. Journal of Hazardous Materials (2001), 81(1-2), 103-114.
Hoang, Manh. Catalysts and processes for treatment of industrial process and waste streams. (2000), 19 pp., Pat. No., WO 2000000285.
Ordonez, S.; Sastre, H.; Diez, F. V. Deactivation of red mud and modified red mud used as catalyst for the hydrodechlorination of tetrachloroethylene. Studies in Surface Science and Catalysis (1999), 126, 443-446.
Alvarez, Jorge; Ordonez, Salvador; Rosal, Roberto; Sastre, Herminio; Diez, Fernando V. A new method for enhancing the performance of red mud as a hydrogenation catalyst. Applied Catalysis, A: General (1999), 180(1-2), 399-409.
Alvarez, Jorge; Rosal, Roberto; Sastre, Herminio; Diez, Fernando V. Characterization and deactivation studies of an activated sulfided red mud used as hydrogenation catalyst. Applied Catalysis, A: General (1998), 167(2), 215-223.
Butz, Thorsten. Hydrocracking of Arabian mix asphaltenes in the presence of modified red mud. Fuel Science & Technology International (1996), 14(9), 1219-1236.
Leclercq, G.; Bencheikh, A.; Prados-Ramirez, M.J.; Cordier, C.; Pietrzyk, S. Use of red mud catalyst for processing of coal and coal liquids. Reactions of a model compound. Recents Progres en Genie des Procedes (1995), 9(43, Boues Industrielles: Traitements, Valorisation), 141-146.
Lamonier, J.F.; Leclerco, G.; Dufour, M.; Leclercq, L. Utilization of red mud. Catalytic properties in selective reduction of nitric oxide by ammonia. Recents Progres en Genie des Procedes (1995), (43, Boues Industrielles: Traitements, Valorisation), 31-36 (in French).
Alvarez, Jorge; Rosal, Roberto; Sastre, Herminio; Diez, Fernando V. Characterization and deactivation of sulfided red mud used as hydrogenation catalyst. Applied Catalysis, A: General (1995), 128(2), 259-73.
Yoshida, Ryoichi; Ibaragi, Shoichi; Hara, Sachio; Yokoyama, Shinichi; Narita, Hideo; Yoshida, Tadashi; Maekawa, Yosuke. Fundamental studies on red mud as a catalyst for coal liquefaction. Studies on active components in red mud and possibilities for improvement of its catalytic activities. Hokkaido Kogyo Gijutsu Kenkyusho Hokoku (1995), 63, 16-21 (in Japanese).
Sourkouni-Argirusi, Georgia. Application of catalytic additives based on red mud in hydrocracking. Part 2. Effects of the coverage degree and process parameters. Erdoel & Kohle, Erdgas, Petrochemie (1995), 48(2), 94-8 (In German).
Sourkouni-Argirusi, Georgia. Use of red mud-based hydrocracking catalyst additives. Part 1. Preparation and base experiments. Erdoel & Kohle, Erdgas, Petrochemie (1994), 47(10), 373-7 (in German).
Llano, Juan J.; Rosal, Roberto; Sastre, Herminio; Diez, Fernando V. Catalytic hydrogenation of anthracene oil with red mud. Fuel (1994), 73(5), 688-94.
Bencheikh, A.; Ziyad, M.; Pietrzyk, S.; Leclercq, G. Hydrogenolysis of anisole on iron catalysts. Editor(s): Ghorbel, A. Colloq. Fr.-Maghrebin Catal., 1st (1993), 2, 405-13., Publisher: Inst. Rech. Catal., Villeurbanne, Fr. (in French).
Mastral, A. M.; Mayoral, C.; Izquierdo, M. T.; Pardos, C. Iron catalyzed hydrogenation of high sulfur content coals. Fuel Processing Technology (1993), 36(1-3), 177-84.
de Marco, I.; Cabellero, B.; Chomon, M. J.; Legarreta, J. A.; Uria, P. Influence of the type of solvent on coal liquefaction with different catalysts. Fuel Processing Technology (1993), 36(1-3), 169-76.
Mastral, A. M.; Mayoral, M. C.; Palacios, J. M. Iron catalytic precursors in dry coal hydroconversion. Energy & Fuels (1994), 8(1), 94-8.
Bacaud, Robert; Besson, Michele; Djega-Mariadassou, Gerald. Development of a new iron catalyst for the direct liquefaction of coal. Energy & Fuels (1994), 8(1), 3-9.
de Marco, I.; Chomon, M. J.; Torres, A.; Legarreta, J. A. Iron compounds and cobalt molybdenum/alumina catalysts: activity in direct hydrogenation of a subbituminous A coal with hydrogen solvent. Fuel Science & Technology International (1993), 11(9), 1215-29.
Yokoyama, Shinichi; Yamamoto, Mitsuyoshi; Maekawa, Yosuke; Kotanigawa, Takeshi. Activities of various catalysts for hydrotreatment of Cold Lake vacuum bottoms. Fuel (1993), 72(4), 573-8.
Mastral, A. M.; Mayoral, C.; Izquierdo, M. T.; Pardos, C. Iron catalysts in coal hydrogenation. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry (1993), 38(1), 124-9.
Bacaud, Robert; Besson, Michelle; Djega-Mariadassou, Gerald. The development of a new iron catalyst for the direct liquefaction of coal. Preprints of Papers – American Chemical Society, Division of Fuel Chemistry (1993), 38(1), 1-7.
Eamsiri, Aurapin; Jackson, W. Roy; Pratt, Kerry C.; Christov, Victor; Marshall, Marc. Activated red mud as a catalyst for the hydrogenation of coals and of aromatic compounds. Fuel (1992), 71(4), 449-53.
Bencheikh, A.; Ziyad, M.; Pietrzyk, S.; Leclercq, G. Hydrogenolysis of oxygen containing compounds on iron catalysts. Journal de Chimie Physique et de Physico-Chimie Biologique (1991), 88(10), 2363-70 (in French).
Bacaud, R. Evaluation of catalytic activity in hydroliquefaction of coal. Fuel Processing Technology (1991), 28(3), 203-19.
Kamo, Tohru; Yamamoto, Yoshitaka; Inaba, Atsushi; Miki, Keiji; Sato, Yoshiki. Hydrodenitrogenation of quinoline with red mud catalyst. Nenryo Kyokaishi (1991), 70(2), 181-7 (in Japanese).
John, Heino; Becker, Karl; Spindler, Herbert; Bollmann, Ulrich; Kobelke, Jens; Engels, Siegfried; Lange, Ruediger; Kulbe, Bernd; Schweren, Roswitha; et al. Method for preparing semi-solid-phase hydrogenation catalysts from red muds. (1990), 4 pp, Pat. No. DD 274984 (in German).
Klopries, Burkhard; Hodek, Werner; Bandermann, Friedhelm. Catalytic hydroliquefaction of biomass with red mud and cobalt monoxide-molybdenum trioxide catalysts. Fuel (1990), 69(4), 448-55.
Mohammed, Mahdi S. Study of the activity and selectivity of catalysts based on red mud in fixed bed reactor. Iraqi Journal of Science (1987), 28(1), 85-102.
Saito, Ikuo; Yamamoto, Yoshitaka; Sato, Yoshiki; Imuta, Kazutoshi. Nenryo Kyokaishi. Coal liquefaction in the presence of tar sand bitumen using red mud catalyst. (1987), 66(6), 433-40 (in Japanese).
Sato, Yoshiki; Miki, Keiji; Yamakawa, Toshio; Minami, Ryohei. Effect of iron catalyst on the composition of oil from coal liquefaction. Fuel Science & Technology International (1987), 5(3), 357-71.
Edwards, James H.; Schluter, Kym; Tyler, Ralph J. Upgrading of flash pyrolysis tars to synthetic crude oil. Hydrotreatment with iron catalyst in a slurry-phase reactor. Fuel (1987), 66(5), 637-42.
Okada, Toshihiko; Fukuyama, Tatsuo; Takekawa, Tohmei; Matsubara, Kenji. Nenryo Kyokaishi. Coal liquefaction catalyzed by iron ores – catalytic activities of laterite ores. (1984), 63(10), 853-60 (in Japanese).
Pregermain, S. Hydroliquefaction of coal in the presence of iron catalysts. Fuel Processing Technology (1986), 12, 155-62.
Reynolds, John G., Yu, S. Gary, Lewis, Robert T. Red mud as a first-stage catalyst in two-stage, close-coupled thermal catalytic hydroconversion. (1985), 6 pp., Pat. No. US 4559129.
Yu, S. Gary, Reynolds, John G. Presulfided red mud as a first-stage catalyst in a two-stage, close-coupled thermal catalytic hydroconversion. (1985), 6 pp., Pat. No. US 560465.
Reynolds, John G., Yu, S. Gary, Beret, Samil. Metal-impregnated red mud as a first-stage catalyst in a two-stage, close-coupled thermal catalytic hydroconversion process. (1985), 6 pp., Pat. No. US 4559130.
Red Mud and Traditional Ceramics
Kavas T. , Use of boron waste as a fluxing agent in production of red mud brick, Building and Environment (expected)
Srinivasan, S., Ajay K. R., Amitava B., Bandari R., Phase Constitution During Sintering of Red Mud and Red Mud–Fly Ash Mixtures, J. Am. Ceram. Soc., 88 [9] 2396–2401 (2005)
Krgovic, M. M., Blagojevic, N. Z., Jacimovic, Z. K., Zejak, R. Possibilities of using red mud as raw materials mixture component for production of bricks. Research Journal of Chemistry and Environment (2004), 8(4), 73-76.
Ekerim, A.. Thermal behavior and microstructure studies of red mud containing marl. Praktische Metallographie (2004), 41(2), 90-101.
Boiko, G. P., Gorbachov, G. F., Boiko, L. G. Bauxite sludge. Processing. Manufacture of binders and ceramics. Khimichna Promislovist Ukraini (Kiev, Ukraine) (2003), (1), 21-23. General Review written in Ukrainian.
Wagh, A. S., Jeong, S. Y. Chemically bonded phosphate ceramics: III, reduction mechanism and its application to iron phosphate ceramics. Journal of the American Ceramic Society (2003), 86(11), 1850-1855.
Wang, J., Jin, M., Wei, L., Zhu, J., Manufacture of spherical porous lightweight ceramics for wastewater treatment. (2002), 4 pp. CN 2002-112755 20020314 (in Chinese).
Stivanakis, V. M., Pontikes, Y. T., Angelopoulos, G. N., Boufounos, D., Fafoutis, D. On the utilization of red mud in the heavy clay industry in Greece. Advances in Science and Technology (Faenza, Italy) (2003), 34 (Science for New Technology of Silicate Ceramics), 187-194.
Pani, B. S., Red mud crisis of alumina-aluminum industry. Proceedings of the International Conference on Solid Waste Technology and Management (2000), 16th 159-168.
Coimbra, M. A., dos Santos, W. N., Morelli, M. R., Recovery of inorganic waste for civil construction. (2002), 48(306), 44-48 (in Portuguese).
Wagh, A. S., Jeong, Seung-Young. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese, (2002), 18 pp. WO 2001-US49836 20011228.
Kwak, H. S., Manufacture of thermal insulating materials for building interior finishing. (2000), KR 99-18588 19990521 ( in Korean).
Blagojevic, N. Z., Zejnilovic, R. M., Krgovic, M. Examination of acid lye reaction of red mud from the alumina factory in Podgorica. Research Journal of Chemistry and Environment (2001), 5(4), 7-12.
Youssef, N. F., Shater, M. O., Abadir, M. F., Ibrahim, O. A. Utilization of red mud in the manufacture of ceramic tiles. Key Engineering Materials (2002), 206-213 (Pt. 3, Euro Ceramics VII), 1775-1778.
Pilurzu, S., Cucca, L., Tore, G., Ullu, F.. New research proposals for utilisation and disposal of bauxitic red mud from Bayer process. Editor(s): Gaballah, I., Hager, J., Solozabal, R. REWAS ’99–Global Symposium on Recycling, Waste Treatment and Clean Technology, Proceedings, San Sebastian, Spain, (1999), 1 471-480. Publisher: Minerals, Metals & Materials Society, Warrendale, Pa.
Sglavo, V. M., Maurina, S., Conci, A., Salviati, A., Carturan, G., Cocco, G.. Bauxite “red mud” in the ceramic industry. Part 2: production of clay-based ceramics. Journal of the European Ceramic Society (2000), 20(3), 245-252.
Sglavo, V. M., Campostrini, R., Maurina, S., Carturan, G., Monagheddu, M., Budroni, G., Cocco, G., Bauxite “red mud” in the ceramic industry. Part 1: Thermal behavior. Journal of the European Ceramic Society (2000), 20(3), 235-244.
Rodriguez, G. A. Perez, Rivera, F. G., De Aza Pendas, S. Manufacture of ceramic materials from Bayer process red muds. Boletin de la Sociedad Espanola de Ceramica y Vidrio (1999), 38(3), 220-226 (in Spanish).
Wagh, A. S., Singh, D., Jeong, S. Method for waste stabilization using chemically bonded phosphate ceramics, and construction materials incorporating potassium phosphate ceramics. (1997), 52 pp. WO 97-US4132 19970318.
Blagojevic, N. Z., Savic, M., Examination of the chlorination process for the red mud from the alumina plant in Podgorica. Hemijska Industrija (1994), 48(1-2), 7-10. (in Serbo-Croatian).
Serban, L., Craclunescu, L., Popescu, M., Artificial aggregates and bricks based on bauxite sludge. (1991), 21(2-3), 81-4 (in Romanian).
Wagh, A. S., Douse, V. E. Silicate bonded unsintered ceramics of Bayer process waste. Journal of Materials Research (1991), 6(5), 1094-102.
Stefanov, S. Use of industrial wastes in brick manufacture. Ceramurgia (1989), 19(6), 236-9 (in Italian).
Chabanova, S. N., Gavrilenko, V. K., Kravchishin, A. M. Effect of iron-containing mineral additives on the hydration of ceramic tiles. Vestnik L’vovskogo Politekhnicheskogo Instituta (1988), 221 94-5 (in Russian).
Kobayashi, M., Manufacture of ceramics without sintering.(1989), 4 pp. JP 88-24565 19880204 (in Japanese).
Di San Filippo, P. A., Usai, G., Recycling of red mud from the Bayer Process, Part 2. Production of vitrified clayware at a firing temperature of over 1000C. ZI, Ziegelindustrie International (1988), 41(4), 133-9.
Di San Filippo, P. A., Usai, G., The recycling of red mud from the Bayer Process, Part 1. Production of masonry bricks at a firing temperature of 950C. ZI, Ziegelindustrie International (1988), 41(2-3), 67-74.
Anghel, N., Nitulescu, I., Nicoara, T., Masonry ceramic facings from common clay and red mud. Materiale de Constructii (1987), 17(2), 127-9 (in Romanian).
Moya, J. S., Morales, F., Garcia Verduch, A. Ceramic use of red mud from alumina plants. Boletin de la Sociedad Espanola de Ceramica y Vidrio (1987), 26(1), 21-9 (in Spanish).
Buraev, M. I., Kushnir, L. I., Facing tiles obtained from hydromica clays and red mud. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya (1986), (7), 66-9. Journal written in Russian.
Knight, J. C., Wagh, A. S., Reid, W. A. The mechanical properties of ceramics from bauxite waste. Journal of Materials Science (1986), 21(6), 2179-84.
Cook, D., Lim, N., Construction material (1985), 12 pp. GB 84-24393 19840927.
Red Mud and Inorganic Polymers (“geopolymers”)
Red Mud and Glass-Ceramics
Red Mud and Glazes
Red Mud and Cements
Tsimas, S., Papadakis, V. G., Antiochos, S., Study and upgrade of supplementary materials for cement and concrete. Cimento ve Beton Dunyasi, 2004, 9(50), 44-53.
Tsakiridis, P. E., Agatzini-Leonardou, S., Oustadakis, P., Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 2004, 116(1-2), 103-110
Dey, D., Nayak, B., Ray, H., Red mud recycling in micro-pelletizing/sintering/grinding process for the manufacture of cement, Patent No. IN 185650
Uchiyama, Y., Terasaki, J., Yamaguchi, O., Method for removing alkali from red mud and production method of cement clinker. Patent No. JP 2004269304
Cicek, T., Altun, A., Cocen, I., Suretti, O., Gercek, C. Investigation into utilization of bayer-Al(OH)3 in production of calcium aluminate cements. Key Engineering Materials (2004), 264-268 (Pt. 3, Euro Ceramics VIII), 2157-2160.
Feige, R., Merker, G., Steyer, J., High-alumina raw material and procedure for its production, (2004), 8 pp. (in German) DE 2003-10300170 20030108.
Zhu, J., A study on the new technology combined with Bayer process in manufacturing of calcium aluminate cements. Light Metals (Warrendale, PA, United States) (2004), 131-135.
Nayak, B., Misra, V., Process for manufacturing high iron non-portland cement clinker used as binder for sintering of iron ore fines and pellets, (2003), 6 pp. US 2002-113175 20020328 (in English).
Pan, Z., Li, D., Yu, J., Yang, N., Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cement and Concrete Research (2003), 33(9), 1437-1441.
Shchukin, V. S., Method of production of components of cement-free hydraulic binder, (2003), RU 2000-118835 20000718 (in Russian).
Mymrin, V., de Araujo Ponte, H., Ferreira Lopes, O., Vazquez Vaamonde, A., Environment-friendly method of high alkaline bauxite’s Red Mud and Ferrous Slag utilization as an example of green chemistry. Green Chemistry (2003), 5(3), 357-360.
Zhao, H., Feng, A., Li, J., Liu, Y., Settling properties and utilization of red mud produced in Bayer process with an excessive addition lime. Light Metals (Warrendale, PA, United States) (2003), 119-123.
Khazanchi, A., Chauhan, R., Production of cementitious binder by molding, firing and grinding of balls prepared from recycled red mud, rice husk, clay and hydrated lime, (1996), 6 pp. IN 89-DE949 19891019 (in English).
Pan, Z., Cheng, L., Lu, Y., Yang, N., Hydration products of alkali-activated slag-red mud cementitious material. Cement and Concrete Research (2002), 32(3), 357-362.
Mymrin V A, Vazquez-Vaamonde A.J. Red mud of aluminium production waste as basic component of new construction materials. Waste management & research : journal of the International Solid Wastes and Public Cleansing Association, ISWA (2001), 19(5), 465-9.
Singh, M., Garg, M. Phosphogypsum based composite binders. Journal of Scientific & Industrial Research (2001), 60(10), 812-817.
Yue, Y., Lu, L., Chang, J., Cheng, X., Study on red mud-alkali activated slag cement and its products. (2001), 20(1), 46-49 (in Chinese).
Gong, C., Yang, N., Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material. Cement and Concrete Research (2000), 30(7), 1013-1016.
Wang, P., Dry mortar for building cement. (Wang, Pinrong, Peop. Rep. China), (1999), 4 pp., CN 97-107227 19971211 (in Chinese).
Ko, Suz-Chung. Alkali activated supersulfated aluminosilicate cements contg. secondary raw materials. (Switz.). PCT Int. Appl. (2000), 16 pp., WO 99-IB1219 19990629 (in English).
Novsesov, E. Industrial testing of red mud from alumina production in raw materials mixture for production of cement clinker. Metallurgicheskaya i Gornorudnaya Promyshlennost (1998), 2, 135-136 (in Russian).
Pan, Z., Fang, Y., Zhao, C., Yang, N.. Guisuanyan Tongbao Study on alkali-slag-red mud cement. (1999), 18(3), 34-39, 52 (in Chinese).
Kumar, A. Das, D, Banerjee, G., Roy, A. K., Sharma, O. N., Nambiar, N. R. Iron-rich slag cement, hydraulic cement compositions obtained with the slags, and their manufacture. (1998), 13 pp., FR 97-2200 19970225 (in French).
Pan, Z., Fang, Y., Pan, Z., Chen, Q., Yang, N., Yu, J., Lu, J.. Solid alkali-slag-red mud cementitious material. Nanjing Huagong Daxue Xuebao (1998), 20(2), 34-38 (in Chinese).
Ito, S., Inoue, T., Kawahara, T., Sasaki, Y., Aoyama, H., Tanosaki, T., Inoue, K., Nagayama, H., Rapid hardenable and expandable materials for mortar and concrete. (1998), 7 pp., JP 96-265990 19961007 (in Japanese).
Singh, M., Upadhayay, S. N., Prasad, P. M., Preparation of special cements from red mud. Waste Management (Oxford), (1996), 16(8), 665-670.
Konik, Z., Stok, A. Iwanciw, J., The possibilities of utilization of waste and raw materials containing Al2O3, Fe2O3, and TiO2 for obtaining ferrates. Editor(s): Justnes, Harald. Proceedings of the International Congress on the Chemistry of Cement, 10th, Gothenburg, June 2-6, 1997, 1 li022-4 pp. Publisher: Amarkai AB, Goeteborg, Sweden.
Liu, Z., Yang, C., Cheng, Z., Ai, M., Treatment and utilization of red mud from Bayer process. Zhongguo Youse Jinshu Xuebao (1997), 7(1), 40-44 (in Chinese).
Singh, M., Upadhayay, S. N., Prasad, P. M., Preparation of iron rich cements using red mud. Cement and Concrete Research (1997), 27(7), 1037-1046.
Kilinckale, F., Ayhan, S., Apak, R., Solidification/stabilization of heavy metal-loaded red muds and fly ashes. Journal of Chemical Technology & Biotechnology (1997), 69(2), 240-246.
Gordon, N., Jr., Pinnock, Willard R., Moore, Marcia M. A preliminary investigation of strength development in Jamaican red mud composites. Cement & Concrete Composites, (1996), 18(6), 371-379.
Guelensoy, Hueseyin, Mahramanhoglu, Mehmet. Studies on the strengths of concretes produced from cements prepared with the addition of red mud. Cimento ve Beton Dunyasi (1996), 1(3), 17-21.
Burkin, S. P., Loginov, Yu. N., Shchipanov, A. A., Zhukov, S. S., Loginova, I. V. Processing of iron-alumina industrial wastes. Stal’ (1996), (6), 77-80.
Ambroise, J., Pera, J. Use of red mud in the building industry. Recents Progres en Genie des Procedes (1995), 9(43, Boues Industrielles: Traitements, Valorisation), 87-90.
Taguma, Y., Shirasaka, N., Kanetani, M., Kobayashi, K., Uchida, S., Manufacture of cement compositions. 7 pp. JP 94-247201 19940914, (in Japanese).
Kohno, K., Amo, K., Ogawa, Y., Gyotoku, M. Properties of mortar and concrete using red mud and finely ground silica. American Concrete Institute, SP (1995), SP-153 (Vol. 2, Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 2), 1103-20.
Parashar, A K., Mathur, V K., Gopal, Shree, Handoo, S K. Quality improvement in clinker using mineralizers/activators., Int. Congr. Chem. Cem., 9th (1992), 2 308-14. Publisher: Natl. Counc. Cem. Build, Mater., New Delhi, India.
Gore, V K., Khadilkar, S A., Lele, P G., Page, C H., Chatterjee, A K. Conservation of raw material through use of industrial wastes in cement manufacture. Int. Congr. Chem. Cem., 9th (1992), 2 238-44.
Saiki, K., Kato, M., Hanaoka, K., Fired products from red mud. (1994), 3 pp., JP 92-85918 19920309 (in Japanese).
Zhovtaya, V. N., Nontraditional iron-containing additives for cement industry. NIITsement, Russia. Tsement (1994), (1), 39-42 (in Russian)
Tonak, T., Sipahi, F., Atay, Y., Use of red mud from the Seydisehir Aluminum Plant in cement manufacture. Cimento Bulteni (1994), 31(320), 1-6 (in Turkish)
Mullick, Ajoy Kumar, Ahluwalia, Subhash Chander. Utilization of wastes in Indian cement industry. Editor(s): Piggott, Robert W. Cem. Ind. Solutions Waste Manage, [Proc. Int. Symp.], 1st (1992), 489-512. Publisher: Can. Portland Cem. Assoc., Toronto, Canada
Pera, J., Conversion of red muds into pozzolans. Materials Research Society Symposium Proceedings (1992), 245(Advanced Cementitious Systems: Mechanisms and Properties), 55-61.
Cao, L., Manufacture of cement clinkers in tunnel kilns and collecting volatile materials. (1993), 6 pp., CN 92-105301 19920629 (in Chinese).
Pera, J., Momtazi, A. S., Pozzolanic activity of calcined red mud. American Concrete Institute, SP (1993), SP-132(Fly Ash, Silica Fume, Slag, Nat. Pozzolans Concr., Vol. 1), 749-61.
Chen, M., High-additive-content cement formulations. (1993), 6 pp. CN 92-104906, 19920629, (in Chinese).
Akhmetov, I. S., Miryuk, O. A. Rudnen. Properties of portland cement clinkers from industrial waste. Izvestiya Vysshikh Uchebnykh Zavedenii, Stroitel’stvo (1992), (3), 66-9 (in Russian).
Tyan, V. A., Torpishchev, Sh. K., Yarmakovskii, V. N.Hardening characteristics of cements with added bauxite sludge. Izvestiya Vysshikh Uchebnykh Zavedenii, Stroitel’stvo i Arkhitektura (1984) (1990), (7), 56-60 (in Russian)
Amat di San Filippo, Use of red mud from the Bayer process for producing Ferrari cements. ZKG International, Edition B (1989), 42(11), 584-6 (in German)
Kohno, K., Sugimoto, A., Kashiwai, T., High-strength concrete containing finely ground silica and red mud. Semento Gijutsu Nenpo (1988), (42), 136-9 (in Japanese)
Bakulina, E. I., Rogozhina, R. Ya., Polonskii, L. A.Red mud – an aggregate for concrete. Beton i Zhelezobeton (1989), (1), 36-7 (in Russian)
Rybakova, I. S., Gavrilenko, O. I., Shvets, A. S. Iron-containing wastes as a raw material for portland cement. Stroitel’nye Materialy i Konstruktsii (1987), (2), 24 (in Russian)
Prasad, P. M., Kachhawaha, J. S., Gupta, R. C., Mankhand, T. R., Sharma, J. M. Studies on utilization of red mud. Eds: Mehrotra, S. P., Ramachandran, T. R. Prog. Metall. Res.: Fundam. Appl. Aspects, Proc. Int. Conf. (1986), 343-50. Publisher: Tata McGraw-Hill, New Delhi, India.
Red Mud and Glass-Ceramics
Peng, F., Liang, K., Shao, H., Hu, A., Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud. Chemosphere (2005), 59(6), 899-903.
Yang, J., Zhang, D., Hou, J., Xing, G., Xiao, B., Effects of heat treatment on the surface unidirectional crystallization and volume crystallization of glass-ceramics mostly made from red mud. Cailiao Rechuli Xuebao (2004), 25(6), 20-24 (in Chinese)
Erol, M. Characterization of glass-ceramics produced from waste materials. Key Engineering Materials (2004), 264-268 (Pt. 3, Euro Ceramics VIII), 1883-1886.
Balasubramanian, G., Nimje, M. T., Kutumbarao, V. V. Conversion of aluminium industry wastes into glass-ceramic products. Travaux du Comite International pour l’Etude des Bauxites, de l’Alumine et de l’Aluminium (2000), 27(13th International Symposium of ICSOBA, 2000), 396-402.
Zhang, P., Lin, R., Yan, J., Making glass-ceramics using red mud as raw materials. Youse Jinshu (2000), 52(4), 77-79 (in Chinese)
Balasubramanian, G., Nimje, M. T., Kutumbarao, V. V. Conversion of aluminium industry wastes into glass-ceramic products. Editor(s): Stewart, Donald L., Jr., Daley, James C., Stephens, Robert L. International Symposium on Recycling of Metals and Engineered Materials, Proceedings, 4th, Pittsburgh, PA, United States, Oct. 22-25, 2000, 1223-1228. Publisher: Minerals, Metals & Materials Society, Warrendale, Pa.
Zhang, P., Yan, J., Mossbauer and infrared spectroscopy investigation on glass ceramics using red mud. Zeitschrift fuer Metallkunde (2000), 91(9), 764-768.
Getrouw, M., Fonseca, M., Dutra, Achilles J., Process for treatment of red mud for recovery of iron and aluminum hydroxides and production of glass ceramics. Braz. Pedido PI (1998), 14 pp. (in Portuguese) BR 96-2530 19960530.
Rincon, J. Ma., Pelino, M., Romero, M. Glass-ceramics obtained from axial pressing and sintering of vitrified high iron content red muds. Eds: Pelino, Mario, Pellacani, Gian Carlo. Proceedings of the National Congress, Valorisation and Recycling of Industrial Wastes, 1st, L’Aquila, Italy, July 7-10, 1997, 169-182. Publisher: Mucchi Editore, Modena, Italy.
Marabini A., Plescia P., Maccari, D., Burragato F., Pelino, M. New materials from industrial and mining wastes: glass-ceramics and glass- and rock-wool fiber. International Journal of Mineral Processing (1998), 53(1-2), 121-134.
Kubota, T., Kamiyoshi, H., Yoida, S., Glass-ceramics from red mud. 2 pp. JP 76-49390 19760501 (in Japanese)
Red Mud and Glazes
Yalcin, N., Sevinc, V. Utilization of bauxite waste in ceramic glazes. Ceramics International (2000), 26(5), 485-493.
Yalcin, N., Sevinc, V. The use of red mud for the production of aventurine glazes. Interceram (1999), 48(4), 231-234, 236-237.
Mete, Zeliha, Cam, Alp. Egitim Fak., Utilization of red mud from aluminum industry for making of artistic glazes in ceramic. Eds: Aydin, Adnan. Kim. Kim. Muhendisligi Semp., 8th (1992), 4 19-24. Publisher: Marmara Univ. Fac. Sci. Lett., Istanbul, Turkey (in Turkish)
Zeng, L., Peng, F., Colored wall tiles from red shale. Xibei Qinggongye Xueyuan Xuebao (1988), (2), 68-72 (in Chinese)
Vancea, V., Naturally colored porcelain glazes. Materiale de Constructii (Bucharest, Romania) (1987), 17(4), 246-8 (in Romanian)
Wang, X., Wan, J., Glazed products made from waste industrial residues. Faming Zhuanli Shenqing Gongkai Shuomingshu (1987), 4 pp. CN 85-106671 19850828 (in Chinese).
Red Mud and Metallurgy
The list will be available soon:) Thank you
Red Mud and Bayer Process
The list will be available soon:) Thank you
Red Mud, Rare Earth and Critical Elements
Tsakanika, L. V., Ochsenkuehn-Petropoulou, M. Th., Mendrinos, L. N. Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC. Analytical and Bioanalytical Chemistry (2004), 379(5-6), 796-802.
Yang, Jun-chen, Wang, Feng-ling, Li, De-sheng, Fei, Yong-chu, Wang, Ling. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. (2004), 13(2), 89-92 (in Chinese)
Smirnov, D. I., Molchanova, T. V., Vodolazov, L. I., Beganov, V. A. The sorption recovery of rare earth elements, yttrium and aluminum from red mud. Tsvetnye Metally (Moscow, Russian Federation) (2002), (8), 64-69 (in Russian)
Romanov, I. I., Dunai, E. I. Rare elements and their behavior during technological conversion of bauxites and iron-aluminum ores from the Kursk Magnetic Anomaly region. Razvedka i Okhrana Nedr (1998), (9-10), 27-30 (in Russian)
Subrahmanyam, A. V., Singh, Jagmer. Occurrence of rare earth elements in Panchpatmali bauxite deposit and red mud, Koraput district, Orissa. Journal of the Geological Society of India (1997), 50(3), 369-372.
Loginova, I. V., Koryukov, V. N., Lebedev, V. A., Rakipov, D. F. Distribution of rare earth elements in raw materials and products of alumina plants in Ural. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya (1997), (1), 19-20 (in Russian)
Xiao, Jinkai, Lei, Jianquan, Xia, Xiang. Some characteristics of scandium in bauxite from central Guizhou as well as in red mud. Kuangwu Xuebao (1994), 14(4), 388-93. (in Chinese)
Fulford, G. D., Lever, G., Sato, T., Recovery of rare earth elements from red mud (1991), 43 pp. (in Portuguese). BR 90-1453 19900329.
Wagh, A. S., Pinnock, W. R. Occurrence of scandium and rare earth elements in Jamaican bauxite waste. Economic Geology and the Bulletin of the Society of Economic Geologists (1987), 82(3), 757-61.
Red Mud, Rehabilitation and Restoration
Courtney, R.; Timpson, J. and Grennan, E. (2003) Growth of Trifolium pratense in red mud amended with process sand, gypsum and thermally dried sewage sludge. International Journal of Mining, Reclamation and Environment, 17:4: 227-233
Courtney, R. and Timpson (2004) Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge – A two-year field study. Plant and Soil, 266:1:187-194
Courtney, R. and Timpson (2005) Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum. Water, Air and Soil Pollution, 164:1: 91-102
Courtney, R. and Mullen, G. (2009) Use of germination and seedling performance bioassays for assessing revegetation strategies on bauxite residue, Water, Air and Soil Pollution, 197: 15-22
Courtney, R., Mullen, G. and Harrington, T. (2009) An evaluation of revegetation success on bauxite residue at the Aughinish Alumina refinery. Restoration Ecology, 17:3: 350-358
Courtney, R. Harrington, T and Jordan, S.N. (2009) Physico-Chemical Changes in Bauxite Residue following application of Spent Mushroom Compost and Gypsum, Land Degradation & Development, 20: 572-581
Courtney, R. and Harrington, T. (2010) Assessment of plant-available phosphorus in a fine textured sodic substrate. Ecological Engineering. 36: 542-547
Courtney, R., O’Neill, N., Harrington, T. and Breen, J. (2010) Macro-athropod succession in grassland growing on bauxite residue, Ecological Engineering, 36: 1666-1671
Courtney, R., Keith, A. M. and Harrington, T. (2011) Nematode assemblages in bauxite residue with different restoration histories, Restoration Ecology, 19: 6: 758-764
Courtney, R. and Kirwan, L. (2012) Gypsum amendment of alkaline bauxite residue – Plant available aluminium and implications for grassland restoration, Ecological Engineering, 42: 279– 282
Courtney, R. and Harrington, T. (2012) Nutrition of Holcus lanatus in a saline sodic residue amended with gypsum and spent mushroom compost, Land Degradation & Development, 23: 144-149
Courtney, R. and Harrington, T., Byrne, K. (2013) Indicators of soil formation in rehabilitated bauxite residues. Ecological Engineering, 58, 63– 68
Schmalenberger, A., O. O’Sullivan, J. Gahan, P.D. Cotter and R. Courtney, (2013) Bacterial communities established in bauxite residues with different restoration histories. Environmental Science and Technology, 47, 7110−7119
Red Mud and Other
The list will be available soon:) Thank you